
1

Python at NERSC

New User Training
June 16, 2020

Laurie Stephey
Data Analytics and Services Group

lastephey@lbl.gov

2

● We probably don’t have to tell
you about Python

● Extremely popular interpreted
language, continuing to grow

● Libraries like NumPy, SciPy,
scikit-learn commonly used for
scientific analysis

● Machine learning tools covered
in M. Mustafa’s talk later today

https://xkcd.com/353/

What is Python?

https://xkcd.com/353/

3

● In the “old days” languages like C and Fortran were the only
options at HPC/supercomputing centers

● Now NERSC has 7000+ users, most of whom use Python for
some part of their work, and this number is growing

● Python is fully supported at NERSC- we use Anaconda Python to
provide pre-built environments and the ability for users to create
their own environments

● We are here to help enable your Python scientific software at
both small and large scale

Can I Use Python at NERSC? Yes!

https://docs.anaconda.com/anaconda/

https://docs.anaconda.com/anaconda/

4

Two Major Options for Python at NERSC

Pre-built Python
environment

module load python

Build your own conda
environment

module load python
conda create -n
myenv…

Best for basic things like
NumPy, SciPy, mpi4py

Best for using custom
packages (from github, for
example) or libraries not in
the default environment

5

Making Your Own Python Conda Environment

● That’s it!
● You can install anything you need
● Easy to convert into a Jupyter kernel
● If something goes wrong, just delete it and make a new one

module load python
conda create -n myenv python=3.7
source activate myenv
conda (or pip) install yourfavoritepackage
###import antigravity
source deactivate myenv

6

How to Scale Up Your Python Code?
Since you’re here at NERSC, chances are you want to run your Python code in
parallel. There are many options, including:
● Multiprocessing

○ Single node only, process parallelism via a pool of workers
● Dask

○ Single or many nodes, framework to create a group of workers that
execute tasks coordinated by a scheduler, nice visualization tools

● mpi4py
○ Single or many nodes, best performance when used together with a

container (Docker/Shifter)
● See our docs for more info:

https://docs.nersc.gov/development/languages/python/scaling-up/

https://docs.nersc.gov/development/languages/python/scaling-up/

7

Most Common Python Problems at NERSC
Here are the most common* reasons people submit Python tickets:

1) Trouble with installing and scaling mpi4py
2) Trouble as a result of settings in dotfiles

Let’s talk about how you can avoid these problems!

* My unscientific opinion after answering Python tickets for ~ 1 year

8

mpi4py Installation at NERSC
● mpi4py is our most complex Python package in terms of how it is installed
● Do not pip install mpi4py or conda install mpi4py! This works

on your laptop but not on our complex supercomputer!
● Your options:

○ If you module load python, mpi4py is already there and you are ready to go
○ If you build your own conda environment, you’ll need to install mpi4py inside

following our recipe:
https://docs.nersc.gov/development/languages/python/mpi4py/#mpi4py-in-yo
ur-custom-conda-environment

● Note that MPI is disabled on all NERSC login nodes. You’ll need to be on a
compute node to use mpi4py.

https://docs.nersc.gov/development/languages/python/mpi4py/#mpi4py-in-your-custom-conda-environment
https://docs.nersc.gov/development/languages/python/mpi4py/#mpi4py-in-your-custom-conda-environment

9

Containers Best for mpi4py Scaling

You try to launch your mpi4py job on 1000 nodes and suddenly it’s really
slow. What happened?!?
Every time you import numpy inside your Python script, it has to move data
across our filesystems. For 1000 nodes, this can be really slow!
If you plan to run mpi4py at large scale, we *strongly* recommend that you
build your Python inside a Docker container and run via Shifter. This will
make your startup much faster and resilient to filesystem congestion. See our
docs for more info:
https://docs.nersc.gov/development/languages/python/scaling-up/#shifter-the-best
-way-to-run-python-at-scale

https://docs.nersc.gov/development/languages/python/scaling-up/#shifter-the-best-way-to-run-python-at-scale
https://docs.nersc.gov/development/languages/python/scaling-up/#shifter-the-best-way-to-run-python-at-scale

10

Python Problems from Dotfiles

Dotfiles = .bashrc, .bashrc.ext,
.bash_profile, bash_profile.ext ...
These files let you customize your NERSC
environment at startup.
But! it’s easy to put things in these files and
forget about them.
When users submit Python tickets, usually
the first thing we do is check your dotfiles.

User: Python is broken
NERSC staff: Python is fine,
your .bashrc.ext just has some
bad settings
User:

11

Here Is a Bad .bashrc.ext Example
If this user encounters a
problem, all these settings
make it really difficult to find
the actual issue

Avoid problems by keeping
your dotfiles clean:

● Add only what you
really need

● Periodically check to
make sure the settings
are up-to-date

● This .bashrc.ext also
had settings from
Hopper, Carver, and
Edison...

12

Should I Use Python 2 or Python 3?

Python 3!
Python 2 retired on January 1, 2020. Developers are no
longer supporting Python 2. See our docs for more info:
https://docs.nersc.gov/development/languages/python/#end-of-life-for-python-2

We still provide some pre-built Python 2 environments, but
we don’t promise to keep these forever.
We will *not* support Python 2 on Perlmutter so please
transition your code now.

https://docs.nersc.gov/development/languages/python/#end-of-life-for-python-2

13

What About Perlmutter and GPUs?!?!
● Good question! There is no easy import gpu in Python.
● Python GPU frameworks come in two major categories:

○ Drop-in replacement for NumPy/SciPy
○ Custom GPU kernel

● You may actually need a combination of frameworks to fully port
your code

● NVIDIA RAPIDS is another option for pandas/scikit-learn, but we
we won’t cover that in detail here. See our docs for more info:
https://docs-dev.nersc.gov/cgpu/examples/#nvidia-rapids

https://docs-dev.nersc.gov/cgpu/examples/#nvidia-rapids

14

Drop-in Replacements for NumPy/SciPy
● CuPy

○ Very easy to use, looks very much like NumPy
○ Backend is CUDA, will only work on NVIDIA GPUs
○ Also has its own method for user defined kernels

● JAX
○ Developed by Google, backend uses XLA compiler
○ Harder to use, may require some code changes
○ Will work on many kinds of hardware, both CPUs and GPUs
○ Also has JIT compiler for custom kernels

● Legate, Bohrium, GrumPy, Weld…

15

Custom GPU Kernel Options
● Numba CUDA

○ JIT compiles Python code to GPU code
○ Numba kernels look more like CUDA than traditional Python
○ Will only work on NVIDIA GPUs (Numba AMD also exists)

● PyCUDA
○ CUDA kernels wrapped in Python, more powerful than Numba
○ User has to know and understand CUDA
○ Will only work on NVIDIA GPUs

● PyOpenCL
○ OpenCL kernels wrapped in Python
○ User has to know and understand OpenCL
○ Portable-- will run on any CPU and GPU

16

Getting Started Using Python on GPUs
General recommendation: Choose 1 NumPy replacement + 1
custom kernel framework
Quickstart: CuPy + Numba CUDA
● Pros: easier to use, minor code changes required
● Cons: tied to NVIDIA GPUs
Portable: JAX + PyOpenCL
● Pros: will run on any hardware
● Cons: harder to use, have to understand OpenCL
See our docs for more info:
https://docs.nersc.gov/performance/readiness/#python

https://docs.nersc.gov/performance/readiness/#python

17

tl;dr
● Welcome to NERSC!
● We work hard to have clear and helpful Python documentation.

Please read it! It will save you time and trouble:
https://docs.nersc.gov/development/languages/python/

● Documentation suggestions (or contributions!) welcome
● Avoid common Python problems:

○ Be careful when installing mpi4py and consider using a
container for better mpi4py performance

○ Make your life easy and keep your dotfiles clean
● If you have questions, submit a ticket at help.nersc.gov

https://docs.nersc.gov/development/languages/python/

18

Thank You and
Welcome to

NERSC!

19

source activate vs. conda activate
After creating a conda environment you will see:
To activate this environment, use

$ conda activate myenv

To deactivate an active environment, use

$ conda deactivate

You can use source activate OR conda activate
● source activate doesn’t make any changes to your setup
● conda activate will make changes to your .bashrc file
● See our docs for more info:

https://docs.nersc.gov/development/languages/python/#creating-conda-environments

https://docs.nersc.gov/development/languages/python/#creating-conda-environments

20

Helpful Python Commands at NERSC
module load python → loads the default Python environment
module avail python → shows all of our pre-built Python environment
options
conda list → shows you which libraries are in the environment
conda create -n myenv → make a new environment
source activate myenv/conda activate myenv → start your
custom environment
source deactivate/conda deactivate → exit your custom
environment
conda clean -a → clean up your .conda directory, including packages left
over from upgraded/deleted environments, important for keeping your
$HOME directory under quota!

